Call to Power 2 API Functions
Building a city

API call:

bool CityBuild(API_City p_cCity, const API_UnitType p_iUnitType);
Description:

Instruct a city to start building a unit of the specified type. This is only effective if the build queue for the city is empty.

Parameters:

API_City p_cCity

// The city to start the production.

API_UnitType
 p_iUnitType
//The type of unit to start producing.

Returns:

Whether or not the city build plans were successfully changed

Creating a city

API call:

bool Settle(API_Army p_aArmy);
Description:

Have an army settle its current location. Obviously, this only works for settler units (or sea equivalents).

Parameters:

 API_Army p_aArmy

//The army including a settler unit.

Returns:

Whether or not it was possible to settle
Adding city improvements

API call:

bool CityImprove(API_City p_cCity, const API_CityImprovementType p_iImproveType);
Description:

Instruct a city to start building a city improvement of the specified type. This is only effective if the build queue for the city is empty.

Parameters:

 API_City p_cCity

//The city to start the production.

 API_CityImprovementType p_iImproveType //The type of city

 //improvement to start building.

Returns:

Whether or not the city build plans were successfully changed

Moving units to a given location.

There are two functions that that performs this action

API call:

API_Direction MoveArmy(API_Army p_aArmy, const API_Direction p_iDirection);
Description:

Move an army one space in one of 8 directions. This function will attempt to move in the specified direction, but if that is not possible it will try the next direction in clockwise order until legal movement is found.

Parameters:

API_Army p_aArmy

//The army to be moved.

 API_Direction p_iDirection
//The direction in which the army should be moved.

Returns:

The direction the army actually moved, or CTP_API::API_Direction::INVALID if movement was not possible.
API call:

bool MoveArmyTo(API_Army p_aArmy, const API_Location p_lDestination);
Description:

Instruct an army to start moving towards a specific destination. The path followed is currently deterministic and determined by A*.
Parameters:
API_Army p_aArmy

 //Army to be moved.

API_Direction p_lDestination //Location to which the army should be moved.
Returns:

Whether or not a path to the destination was found
Attack unit with army

API call:

API_AttackResult AttackEnemyPosWithArmy(API_Army p_aArmy, const API_Location p_lDestination);
Description:

Instruct an army to attack a location where there is an enemy-controlled city. If the city is not within range, this moves closer to it instead. There is a bug where units with high movement rates will not be able to move and attack in the same turn unless this is called more than once.
Parameters:

 API_Army p_aArmy

 //The army to make the attack.

 API_Location p_lDestination //The location containing the city to be attacked.
Returns:
Whether the attack could be performed
Attack city with army

API call:

API_AttackResult AttackCityPosWithArmy(API_Army p_aArmy, const API_Location p_lDestination);
Description:

Instruct an army to attack a location where there is an enemy-controlled city. If the city is not within range, this moves closer to it instead. There is a bug where units with high movement rates will not be able to move and attack in the same turn unless this is called more than once.
Parameters:

 API_Army p_aArmy

 //The army to make the attack.

 API_Location p_lDestination //The location containing the city to be attacked.
Returns:
Whether the attack could be performed
Garrison current location
API call:

bool ArmyToDefend(API_Army p_aArmy);
Description:

Instruct an army to fortify its current location.
Parameters:

 API_Army p_aArmy
//The army to entrench.

Returns:
Whether or not it was possible to entrench the unit.
Stop garrisoning current location
API call:

bool StopDefending(API_Army p_aArmy);
Description:

Instruct an army to stop fortifying its current location
Parameters:

API_Army p_aArmy

//The army to detrench
Returns:

Whether or not it was possible to detrench the unit.
Search for visible enemy units
API call:

bool FindEnemyUnit(API_Army p_aArmy, const int p_iVisionRange, DynamicArray<Unit> * p_pEnemyList);
Description:
Search for enemy units visible from one of your own units. This function finds all enemy units that are visible from one of your units.
 It does not prioritize their order by distance. Only vision ranges of 1 and 2 are currently implemented. Vision range should be determined by the unit type to prevent cheating.
Parameters:
 API_Army p_aArmy //The army that is doing the "looking".

 int p_iVisionRange //The vision style of the army, either 1 or 2.

 DynamicArray<Unit> p_pEnemyList //A list of enemy units that the army sees.
Returns:

Whether or not any units were found
Search for visible enemy cities
API call:

bool FindEnemyCity(API_Army p_aArmy, const int p_iVisionRange, DynamicArray<Unit> * p_pCityList);
Description:

Search for enemy cities visible from one of your own units.
Parameters:

API_Army p_aArmy //The army that is doing the "looking".

 int p_iVisionRange //The vision style of the army, either 1 or 2.

 DynamicArray<Unit> p_pCityList //A list of enemy cities that the army sees.

Returns:

Whether or not any cities were found
Search for unexplored map tiles
API call:

bool FindUnexplored(API_Army p_aArmy, API_Location & p_lUnexplored);
Description:

Search for the closest unexplored territory an army can reach. This actually uses the army's pathfinding such that it cannot cheat to know whether or not it can get somewhere. This has not been tested for water or air units, and probably does not work for them. This currently searches in a clockwise fashion around concentric squares and returns the first thing found. An improved algorithm would choose a random initial direction. It would also be reasonable to expect this to make the move that exposes the maximal amount of unexplored territory, which it currently does not do. This will only search out to as far as 100 locations away from the army.
Parameters:

 API_Army p_aArmy
 //The army that is searching for unexplored territory.

 API_Location p_lUnexplored //The first reachable unexplored territory found.
Returns:

Whether or not any territory was found
Search for a path
API call:

bool ArmyCanReach(const API_Army p_aArmy, const API_Location p_lCheck);
Description:

Determine whether or not there is a known path from an army to a location. The path is not retained, although that might be more efficient in some cases.
Parameters:

API_Army p_aArmy

//The army to consider moving.

API_Location p_lCheck
//The location the army might try moving to.
Returns:

Whether or not there is a legal, known path between them
Convert integer to direction
API call:

API_Direction DirFromInt(const int p_iDirection);
Description:

Convert an integer into a direction.
Parameters:
int p_iDirection
//The direction, 0-7 for a value or other for invalid.
Returns:

The enumerated direction type for this direction.
Query buildable city
API call:
bool QueryCityBuildable(API_Army p_aArmy);
Description:

Query if a unit can build a city at its current location
Parameters:

API_Army p_aArmy

//The army including a settler unit.

Returns:

Whether or not it is possible to settle on this settler’s location
Query a move
API call:

bool QueryMoveable(API_Army p_aArmy, API_Location p_lLocation);
Description:
Query if a unit can move to a given location on the map

Parameters:

API_Army p_aArmy

//The army to move to another location

API_Location p_lLocation
//The desired location to move the army to

Returns:

Whether or not it is possible to move the army towards that destination

Query building a unit
API call:

bool QueryUnitBuildable(int unit_type, API_City p_cCity);

Description:

Query if a unit can be produced in a given city you control (ie: you are far enough in the tech tree). There are currently 5 types of units that can be built:

Settler = 54 --builds cities

Warrior = 70 --basic military unit

Hoplite = 30 --defensive unit

Archer = 2 --ranged military unit (requires ballistics, agriculture, and tool making advances)
Diplomat = 20 --diplomatic unit (requires beauracracy advance --which requires a lot of other advances, see the Great Library in the game)
Parameters:

int unit_type
//the integer representation of the unit type you wish to build

API_City p_cCity [in] the city to produce the new unit

Returns:

Whether or not it is possible to produce that unit type in that city

Query building a city improvement

API call:

bool QueryImprovementBuildable(int improvement_type, API_City p_cCity);

Description:

Query if an improvement can be built in a given city you control (ie: you are far enough in the tech tree). There are currently 4 types of city improvements that can be built:

Ballista Towers = 7 --defensive improvement (requires tool making, agriculture, and ballistics advances)

Bazaar = 11
--gives gold bonus (requires writing, jurisprudence, agriculture, and trade advances)

Granary = 30
--gives food bonus

Shrine = 47
--gives happiness bonus

Parameters:

int improvement_type //the integer representation of the improvement to build

API_City p_cCity
 //the city in which to build the improvement

Returns:

Whether or not it is possible to build that improvement in that city

Query a garrison
API call:
bool QueryGarrison(API_Army p_aArmy);

Description:

Query if a unit can garrison its current location

Parameters:

API_Army p_aArmy //the unit to garrison its current location

Returns:

Whether or not it is possible to garrison at the current location

Query stop garrisoning

API call:
bool QueryUngarrison(API_Army p_aArmy);

Description:

Query if a unit can stop garrisoning its current location

Parameters:

API_Army p_aArmy //the unit to stop garrisoning its current location

Returns:

Whether or not it is possible to ungarrison
Query attacking a unit

API call:

bool QueryUnitAttackable(API_Army p_aArmy, API_Location p_lDestination);

Description:

Query if a unit can attack an enemy unit on a given location

Parameters:

API_Army p_aArmy //the unit to perform the attack

API_Location p_lLocation //the location with the unit you want to attack

Returns:

Whether or not it is possible to attack that unit

Query attacking a city
API call:

bool QueryCityAttackable(API_Army p_aArmy, API_Location p_lDestination);

Description:

Query if a unit can attack an enemy city on a given location

Parameters:

API_Army p_aArmy //the unit to perform the attack

API_Location p_lLocation //the location with the city you want to attack

Returns:

Whether or not it is possible to attack that city

Load

API call:
bool LoadGame(char name[]);

Description:

Load a saved game. Note that this calls g_slicEngine's SetLoadGame, which eventaully triggers the LoadSavedGame function defined in civapp.cpp

Parameters:

char[] name //name of the game to be loaded

Returns:

True

Save
API call:

int SaveGame(char name[]);

Description:

Save the current game. This wraps the Save function defined in fileio\GameFile.cpp

Parameters:

char[] name
 //name of the game to save (full path must be specified, ie: C:\devel\~myProjs\CTP2\ctp2_code\ctp\save\games\Julius\test1)

Returns:

0 on success, >0 on failure
